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The field-theoretic renormalization group is used to derive scaling relations for 
the transport of passive scalars by an incompressible velocity field with a 
specified energy spectrum. Results are obtained with the analog of the e expan- 
sion of critical phenomena and compared to exact results which are available for 
shear flows in two dimensions. A 1IN expansion is proposed for the regions in 
which the e expansion fails. 
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1. I N T R O D U C T I O N  

The renormalization group has facilitated the derivation of universal 
scaling relations for systems at a critical point, (1) where there is physics at 
many length scales, as evidenced by divergences in perturbation theory. 
The renormalization group procedure consists of the iterative elimination 
of small length scales, whose effect on longer length scales is retained 
through the modification of the equations (or probability distributions) 
describing the physics at longer scales. It happens that the equations 
describing the remaining long-distance physics tend toward a definite limit 
as the number of iterations increases, irrespective of the details of the 
original equations. This is how universality is explained. The limiting 
equations which are obtained as the number of iterations goes to infinity 
(the fixed point, in renormalization group parlance) can often be found 
approximately and, from these, the scaling exponents. 

One would like to use this program to explain the universal 
Kolmogorov  scaling law in turbulence. This is because the forced 
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Navier-Stokes equations, which provide the fundamental description of 
turbulent flows, exhibit the same kind of divergences in perturbation theory 
as one finds in critical phenomena, symptomatic of the physics at many 
scales which they describe. Many of the words which were used to describe 
critical phenomena can be used to describe the situation in turbulent flows, 
with, however, one major difference, a difference which has made it thus far 
impossible to realize the hope of a renormalization group justification for 
the Kolmogorov law. In the case of critical phenomena, the fundamental 
nonuniversal interactions which are put in by hand in any model act at 
short distances; universal behavior is found at long distances. Turbulent 
flows are produced by forces which act at long distances; the behavior at 
these scales is nonuniversal and depends on the details of the forces. The 
energy which is input at large scales cascades down to small scales where 
the universal Kolmogorov law holds, i.e., the energy Spectrum is 
E(k) = CKe2/3k 5/3 (C K is the Kolmogorov constant and e is the energy dis- 
sipation per unit volume). At very small scales, the energy is dissipated 
nonuniversally. 

Despite this difference between the two physical pictures, it was 
thought that a renormalization group analysis might yield the Kolmogorov 
law, in part because Forster et aL ~2~ were successful in using renormaliza- 
tion group techniques to derive the large-distance, long-time behavior of 
the nonturbulent flows produced by certain specific forces. DeDominicis 
and Martin/3~ generalized this result to a wider range of possible forces and 
showed that for one of these the Kolmogorov law results. However, the 
universality of the 5/3 exponent remains a mystery. 

This mystery will not be solved in this paper. Rather, we consider a 
simpler problem which for certain values of the defining parameters has a 
physical picture similar to that of the opening paragraph but nevertheless 
presents some of the same difficulties as the Navier-Stokes equations, 
namely the transport of passive scalars (e.g., temperature) by an incom- 
pressible flow with a specified energy spectrum. The renormalization group 
treatment of this problem will be considered, in the hope that by seeing the 
limitations and successes of the renormalization group in this simpler arena 
we may learn something about the turbulence problem. In particular, we 
calculate the time rescaling corresponding to a spatial rescaling (i.e., the 
analog of the critical exponent z) in an e approximation, where e is a 
parameter describing the velocity field. We compare our results with the 
exact results of Avellaneda and Majda (4~ for certain two-dimensional flows 
and propose a 1/N expansion which may provide useful information about 
those values of e for which the e expansion is no longer valid. Following 
DeDominicis and Martin, we use the field-theoretic renormalization 
group.(5-7) 
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In the next section, the basic field-theory statement of the problem is 
given: renormalization functions are introduced and renormalization group 
equations presented. The third section is a summary of the exponents that 
may be calculated with these equations, and the final section is a discussion 
of these results. 

2. R E N O R M A L I Z A T I O N  G R O U P  E Q U A T I O N S  

The transport of a passive scalar by an incompressible flow is 
governed by the equation 

(~ - -Vo  V2) T + v i ~ T = O  (1) 

Here T is the passive scalar, Vo is the kinematic viscosity, and v i is the 
velocity field whose correlations are given by 

1 ~~ ~-'k-~ a-~ ( vi(k, 09) v j ( - k ,  -o9))  - (2n)a/2 ao (2) 

where 

k,k s 1 
ru(k)=6 ~ k2 and ~(u)=n( 1 +u2~ (3) 

The velocity field is assumed to have Gaussian correlations. Note that 
e = 8/3 and z = 2/3 yield the Kolmogorov exponent in three dimensions. 

We form, in the usual way, the Martin-Siggia-Rose field theory (6) 
which generates the desired correlation functions. The generating functional 
for T correlations is 

(4) 

where 

(5) 

The Feynman rules for the bare propagator and vertex may be read off 
from the action (5): 
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I 

k l  ; (D1 , . . / / ' ( 3  ; (-03 

2%. k2; co2 

1 
= ( T T ) o  - (6) 

-- ico + VO k2 

1 ~0 (kl), (k3)j Iro(kl  + k~)Ik, + k21 ~ - d - '  ~ 
4 ao 

X . . . .  z ~,aolk~+k21 +(1 3) 

=- M ( k l ,  k2,  k3) (7) 

We may  now employ  the usual field-theoretic renormal iza t ion  group  
techniques.{5 7) We let the cutoff A --* oo and introduce renormal iza t ion  
constants  for the primit ive ul traviolet  divergences: 

T =  Z1/2TR (8)  

~= Z1/z~R (9) 

2 0 = ,~#~Z~/Z 2 (10) 

v 0 = v Z  ~ (11) 

a o = aktZ-~Za (12) 

Some examples  of  divergent  d iagrams are given in Fig. 1. The renormal iza-  
t ion constants  Z, Z~, and Z~ are determined by the renormal iza t ion  
condit ions at an arbi t rary  scale #: 

i2---r~2~(k, ('0) = 1 (13) 
UCO k2 = , u 2  e) = v,u 2 

a IF(z)t k ('0) k2=~2,~ = (14) c~k 2 R ~ , = v 
v,u 2 

r2~(k;, co)lsp=,tu 2-d a +  a (15) 

sP ( 1 )  -2 r~4~(k, co) _- _ _ ' ~ - 2 - a  a +  a (16) 
0o22 a 

SP is the point  k; .  kj = �88 1 ), ('0 = ~t 2. Alternatively, we could just  as 
easily use a minimal  subtract ion scheme. 

There  are now two different ways in which we can proceed, using two 
different renormal iza t ion  g roup  equations.  One  will be more  convenient  for 
s > 4 - 2 z  and  the other  for s < 4 -  2z. This is because it is possible to 
reorganize per tu rba t ion  theory so that  it is bet ter  suited for the different 
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Fig. 1. Divergent diagrams. 

values of e and z: sometimes the exponent k ~ will be relevant for the 
divergence of Feynman integrals and sometimes it will not. To develop 
the renormalization group equation for the former case, we write the 
renormalized response function ( iPT) in the form 

where 
G(k, co) --- ( T T )  = (I/v) F(og/iv, k, g, h, #) 

g~)~V 2 

h = a v  -1  

G(k, co) satisfies a renormalization group equation 

The renormalization group functions are defined by 

ag 
i l l (g ,  h)  = # ~ = - g ( q ~  - 2nv - 2o + e) 

dh 
fl2(g, h) = # ~--~= - h ( 2 - z  + ~/a-- t/v ) 

q~. = ,u ~ In Z~, 

q = # ~ l n Z  

d 
t/~ = # j~p In Zu 

r/a = # d In Za 
a/~ 

(17) 

(18) 

(19) 

= 0 ( 2 0 )  

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Solving the renormalization group equation (20) at an infrared stable fixed 
point, ill(g*, h*)= fl2(g*, h*)= 0, we obtain the scaling form 

G(k, og)~k2+"v-"F - -  It, g*, h*, Iz 
iv '  

(27) 

where 

G(k, m) =- ( T T )  = F(e)/a, k, u, f ,  It) 

u = 2a-  1 (29) 

f =  va -1 (30) 

G(k, co) satisfies a renormalization group equation 

~ + f l t ( u , f ) - ~ u + f l 2 ( u , f ) - ~ - - t l W t l a ~ O  G(k, co) = 0 (31) 

The renormalization group functions are defined by 

du 
ill(U, f )  = # ~ = -u01~ - tla -- 211 + e + Z -- 2) (32) 

df 
f l z ( u , f ) = # - ~ =  --f(z--  2--qa + t/v) (331 

Solving the renormalization group equation (34) at an infrared stable fixed 
point, ill(u*, f * ) =  0, we obtain the scaling form 

G(k, o9)~ k 2 - " F ( [ k ] Z - " ~  ~,  It, u * , f * , # )  (34, 

with time rescaling exponent z -  t/~(u*, f*).  

3. C A L C U L A T I O N  OF E X P O N E N T S  

We present the scaling exponents in d=  2 which results from the 
application of the above equations and briefly summarize the calculation of 
the requisite renormalization functions. We find four different scaling 
behaviors by straightforward calculation with the renormalization group 

(28) 

Hence, the time rescaling exponent is 2 -  t/v(g*, h*). 
The alternative renormalization group equation may be derived if we 

write the renormalized response function (~PT) in the form 
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equat ions  (20) and (31). First, we will consider the three regions in which 
exponents  m a y  be calculated with Eq. (20): 

(i.1) Fo r  z>~2 and e < 0 ,  the infrared stable fixed point  is 
g * =  h * =  0. 3 This is the region of mean-field theory, qv(g* = 0 ) =  0, so the 
t ime rescaling exponent  is 2, the diffusive exponent .  

(ii) Fo r  z~>2 and e > 0 ,  h is still irrelevant, so h * = 0 ,  but  g is 
relevant,  so we are interested in the fixed point  ill(g*, 0 ) = 0 .  We may  find 
the fixed point  to any desired order  in e. To  lowest order,  we find scaling 
exponent  

~v(g*, o) = ~ + o(~ 2) (35) 

(iii) Fo r  z < 2 and e > 4 - 2 z  > 0, bo th  g and h are relevant,  and we 
calculate the exponents  as a double  expansion in e and 2 -  z. To  lowest 
order  in both,  we have scaling exponent  

r/v(g*, h * ) =  e -  (2 - z ) +  O(e 2, ( 2 -  z) 2) (36) 

We run into trouble,  however,  once we consider e < 4 - 2 z .  To  see why, 
observe that  when fl2(g, h ) =  0, we m a y  write 

ill(g, h )  = - g ( r / . ~  - -  2r/a - 2 t /+  e - 4 + 2z) (37) 

For  e < 4 - 2 z ,  g * =  0 is a stable fixed point,  so the fixed point  which we 
used for case (iii) is not. Unfor tunate ly ,  we mus t  find a nonzero  fixed point,  
since, for z < 2, 

/32(0, h ) =  - h ( 2 - z )  (38) 

so there is no infrared stable fixed point  of fl2(0, h). Hence,  we need to find 
some other  fixed point  of (37) to proceed. For tunate ly ,  we may,  instead, 
use the renormal iza t ion  group  equat ion  (31). We find the following two 
behaviors:  

(i.2) Fo r  z < 2 and e < 2 -  z, bo th  u and f are irrelevant, so we have 
mean-field behavior.  

(iv) Fo r  z < 2 and 2 - z < e < 4 - 2z, u is relevant,  but  f is still irrele- 
vant.  4 We m a y  calculate the scaling exponents  as a power  series in e and 
2 -  z. To  lowest order,  we find 

ira(u*, 0) = e - 2(2 - z) + O(e 2, (2 - z) 2) (39) 

3To  see tha t  this fixed poin t  is infrared stable,  observe  tha t  qs, ~/v, and  q are O(g), so 

fl'(g = 0) = -~ .  Hence  g* = 0 is an  infrared s table  fixed poin t  for e < 0 but  uns table  for ~ > 0, 
jus t  as in the case of ~4 theory and  cri t ical  phenomena .  

4 The upper  b o u n d  on e is necessary in order  for f to be irrelevant .  
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or, equivalently, in terms of the other parameters, 

q,(g*, h*) = g + z - 2 (40) 

At the boundaries between these regions [except at that between (iii) and 
(iv)], there are marginal operators, so logarithmic corrections are expected. 
These are straightforward to calculate since they are of the type that one 
finds in four-dimensional quantum field theory. 

To derive the preceding results (i)-(iv), it is sufficient to find the RG 
functions t/2, t/a , t/, and t/~ to O(g 2) [for the results (i.2) and (iv), we need 
to reshuffle the expansion so that it is in terms of u and f ] .  The relevant 
diagrams are displayed in Fig. 1. Using the normalization conditions 
(13)-(16), we obtain 

k 2 = # 2 ,  co = v u 2 

Z =  I + igZ-~oI(k,o ) + O ( g  3) (41) 

~ 1  l g z z ( k ,  09) 1 ZZv=l+f f kS{ -4g I~ (k ) - l g2[Zv (k ) ]2 - . u  )1k2=,2 . . . .  

1 2 , Z~- Za 2- Z~Z~2= 1 + ~ glz(#) + ~-~ g2[ i~(it) ]2 + g g i j .(~) 

(z) .-  z 2  ~-  z~z2~)(2 + a-~z2 ~-  a~Z~) 

a {~gl;.(lt)+~.~g2[la(la)))]2+ 1 2 ,  ~ 
= 1 +ff~-7o 2 ~ g I ~.(/~)~ sP 

+ O(g 3) 
v ,u 2 

(42) 

+ O(g 3) 

(43) 

+ O(g 3) (44) 

where the Feynman integrals I, Iv, I~, and I[ are discussed in the Appendix. 
The desired renormalization functions may be calculated using (23)-(26). 
This is done most easily by differentiating the following equations with 
respect to #, using the chain rule, and solving for fl~ and 1~2 (the left-hand 
sides vanish upon differentiation) (see, e.g., ref. 6, Chapter 9): 

go = g#Z.t Z -  zZv 2 (45) 

ho = h# 2-  ZAaZ2 (46) 

Then t/i (i = v, a) may be calculated according to 

dc d 
(47) 
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4. C O N C L U S I O N  

Let us stop now to make a few observations. First, let us compare our 
results with the exact results of Avellaneda and Majda (4) for a two-dimen- 
sional shear flow (i.e., the velocity field is directed along the y axis and is 
independent of y). They find five different behaviors. For  z > 2 they find 
qv ( g* ) =0  for e < 0 ,  and for 0 < e < 2  they find qv(g*)=e/(l+e/2). For 
z < 2  they find mean field behavior for e < 2 - z ,  rlv(g*)=e+z-2 for 
2-z<e<4-2z,  and rlv(g*)=(2z-4+2e)/(2z-2+e) for 4 - 2 z < e < 2 .  
These are the behaviors (i) (iv) which our analysis has reproduced for 
small e. However, for e > max(2, 4 -  2z), they find r/,,(g*)= e/2. Hence, our 
results, which are good for small e, are completely wrong for ~> 
m a x ( 2 , 4 - 2 z ) .  The above results for cases (i)-(iii) have also been 
obtained (8) to lowest order in ~ using the renormalization group techniques 
of Yakhot and Orszag (9) (which are more in the spirit of Wilson's original 
presentation). However, the analysis in ref. 8 does not yield the correct 
behavior for case (iv). This is essentially because the renormalization group 
techniques used in ref. 8 correspond to the renormalization group equation 
(20), rather than Eq. (31), which allows one to find the correct fixed point 
at O(e, ( 2 - z ) )  for case (iv). 

The region e>max(2 ,  4 - 2 z ) ,  where our analysis fails, is of great 
interest for several reasons. The Kolmogorov spectrum (e = 8/3, z = 2/3) 
occurs on the boundary of the region. Furthermore, this region is similar 
to the region of interest for the Navier-Stokes equations since, presumably, 
this new behavior is due to the appearance of a new relevant opera tor - -  
which is precisely what happens at the boundary of the infrared pumping 
region of the forced Navier-Stokes equations. (3) There is one major 
difference, however. The external parameters, i.e., the exponents describing 
the random force, of the Navier-Stokes equations determine the naive 
operator dimensionality of the basic fields; thus, it is easy to see the 
appearance of new relevant operators as these parameters are varied. In the 
case of transport, however, this is not the case. Only g and h have their 
naive dimensions determined by the values of e and z. Variation of e and 
z can affect only the anomalous dimensions of other operators. This makes 
it harder to find new relevant operators since their relevance must be due 
to their anomalous dimensions. However, this is also an attractive feature 
since it implies that the scaling in the region e > m a x ( 2 , 4 - 2 z )  is not 
written in by hand via the naive operator dimensionality but is determined 
by the dynamics of the underlying equations--which is the type of univer- 
sality that we would like. 

If we wish to explore by general means (i.e., not special to two dimen- 
sions) the regions which are beyond  the reach of the e expansion, some 
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other approximation is needed to reproduce the results of ref. 4; 
presumably, such an approximation will be useful for transport in d > 2  
where exact results are not available. One hope is that a 1/N approxima- 
tion will provide some information about this region. This approximation 
is developed in the following way. We consider N passive scalars and take 
coupling constant 2IN. Several simplifications result if we consider only the 
lowest-order diagrams in 1IN. First, /-,(4) becomes calculable as a power 
series in g. Second, the only diagrams which contribute to F (2) are the 
tadpole insertions in the propagator. Hence, Z = 1. The only RG function 
that cannot be calculated to infinite order in g is Zv. The diagrammatics is 
the same as that of ~4 theory, the only difference between the two theories 
being that in the ~4 theory tadpole insertions merely renormalize the 
critical temperature, while in this case they are physically interesting 
because they determine Z~. To be more specific, we begin with N passive 
scalars, 

~ - V o  V2 T"+v~OiTa=O (48) 

(a = 1, 2 ..... N) and form the generating functional. Replacing 2 by 2/N, we 
arrive at the action 

1 . ~b c~jT b] (49) 

The RG functions may be calculated to lowest nonvanishing order in I/N: 

Z = 1 (50) 

�9 ~ - ~ g / ~ O , ) J  
Z~__Za2 Z~Za2=[1 1 -1 (51) 

Z~ = 1 + - ~  glv(k))-lg2[Iv(k)]2 l + O(g 3) (52) 
l u ) lk2=,u2,oJ= v,u2 

Unfortunately, some further approximation must be made in order to 
evaluate Z~. Hence, we do not learn anything directly about the region of 
interest. However, we have pinpointed the diagrams which cause the most 
difficulty. A method .for dealing effectively with these diagrams--perhaps 
within the 1/N expansion--is needed for further progress. It is possible that 
these approximate renormalization groups which must be developed for the 
transport problem may shed new light on the Navier-Stokes equations and 
turbulence, since they are intended for a region of the former which is 
similar to the region of greatest interest of the latter. 
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APPENDIX.  FEYNMAN INTEGRAL CALCULATION 

The Feynman  integrals I, I~, and I~ corresponding to the diagrams in 
Fig. 1 are 

~2e 

I -  (2~-2d f ddk l  ddk2 dco 1 d(.o 2 

M ( - K 2 ,  - k ~ ,  k) M(K1, k2, k -  km - k 2 )  
X 

( -- iO,)l/V "4- k2 ) (  -- i(.02/V "q- k22) [ -- i(~o -- cot -- ~o2)/v + (k = kl - k2) 2 ] 

(A1) 

kt ~ (" M ( - k l ,  kl ,  k) 
I v =  (27r)d J ddkl de)~ - i ( ~ / v + k k ~  (A2) 

#2~ f M(k3, - k l  - k2 - k3, k) M(k~, k2, k - k~ - k2) L. ddk de) 
(2re) d J ( - -  ioo/v + k 2 ) [  - / ( c o  1 + 03 2 - co)/v + (k - k 1 - k2) 2 ] 

(A3) 

2e 

M(-k~-k~-k3 ,  k, k') M(k,, k~, -k )  • 
( - ico'/v + k'2)( - ico/v + k2)[ - i(o91 + co 2 - co)/v + (k - -  k 1 - k2) 2 ] 

M ( - k ' ,  k3, kl + k2 + k 3  - k - k ' )  
(A4) 

[ - i(co 1 + 092 + co 3 - co - co')/v + ( k  I + k 2 + k 3 - k - k ' )  2 ] 

These integrals may  be evaluated th rough  the use of Feynman  parameters.  
As an example, we present the evaluat ion of Iv for z ~> 2 (we set h = 0, its 
fixed-point value for z >~2). The co integral may  be done immediately by 
con tour  integration. Consider, then, the two terms which contribute to I,,: 

ddkl k .k~ ddk~ ( k 2 + k . k l ) ( k 2 + k . k l )  
~-%=f (2~)dk~lkl +kl~+d_z+ f (-~-~)~k~+-k?-+-a= 2 (A5) 

The denominators  may  be combined using Feynman  parameters  and the 
integrals shifted: 

ddk l  k 2 ( l _ x ) ( ~ + a ) / 2  1 ff elv ~ - Jo d x  + 

+ ( (  ddkl [ ( d + 2 ) x - 1 ] k ~ k 2 + d k  4 
( a6 )  J3 (2re) d d[k21 + (x - xZ)k2] (~ + d)/2 + 1 
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Performing the kl integrals, we obtain 

k 2-~ ~ V(e/2) f dx X-e~2(1 ~ X ~ d / 2  ~ 2 

I~ - (~-~g2  [ F ( ( e  + d -  2)/2) J 

F((e + 2)/2) 
f dxx-~/:-l(1 -x)a/2-: + V((e + d+ 2)/2) 

F(e/2) } 
+ F((e+d)/2)f dx [ (d+2)x I ~ ~/2](1-x)d/2 (a7) 

Using the identity 

f dx x ~- 1(1 - -  x )  ~ - 1  --  /~((~) F( /~)  ( A S )  
v(~ +/3) 

we may perform the x integrals to obtain 

k 2 ~ fF(e/2) F(1 -e /2)  F(d/2- 1) 
# ~Iv- (4.)a/2 [F((~+-d~_~/~-F(-~_-~/~) ) 

F((g + 2)/2) F ( - e /2 )  V(d/2 - 1) 
+-F-~+d+ Z)/Z)F((d-e)/2 1) 

+V(e/2)F(d/2+l)[ r(2~e/2)  V(1-e/2)_ ]~ (A9) 
T ( ~  [_r((d-e)/2+3) r((d-e)/Z+Z)JJ 

So, for instance, we can calculate to lowest order in 

a__ak ~ Iv(k) ~= ~ 
1 ~ V(d/2- l) r(d/2- 1) 

2 (4r0 d/2 [F ( (d -2 )  V(d/2) F((d+2)/2) r(d/2- 1) 

V( d/2 + 1 ) V( d/2 + 1 ) ) 
+ V(d/2) V(d/2 + 3) - V(d/2) V(d/2 + 2) 

(A10) 

For z < 2, we must expand the integral in powers of ( z -2 ) .  For example, 
we write 

hkZ+k2-2k 2 1  1 I 1 4  1 1 - v h ( z -  2)lnk2 + ... (All)  

and proceed as above. 
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